Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.061$ S = 1.199 2245 reflections	$\Delta \rho_{\text{max}} = 1.345 \text{ e } \text{\AA}^{-3}$ (0.76 Å from Cs4) $\Delta \rho_{\text{min}} = -0.943 \text{ e } \text{\AA}^{-3}$ Extinction correction: SHELXL97 (Sheldrick,
66 parameters $w = 1/[\sigma^2(F_o^2) + (0.0203P)^2$	1997 <i>a</i>) Extinction coefficient:
+ 9.9534 <i>P</i>] where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$	0.00095 (3) Scattering factors from International Tables for
() <i>///////////////////////////////////</i>	Crystallography (Vol. C)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\mathring{A}^2) $U_{re} = (1/3) \sum \sum U^{ij} a^i a^j a \cdot a^j$

	x	у	z	U_{cq}
Snl	0.32367 (3)	0.24149(3)	0.95419 (5)	0.01064 (14)
Tel	0.18711 (3)	0.23262 (4)	1.31347 (5)	0.01534 (14)
Te2	0.07858 (3)	0.12969 (4)	0.92296 (5)	0.01782 (14)
Te3	0.38101 (3)	0.06713 (3)	1.02176 (5)	0.01704 (14)
Cs1	1/2	0.10687(5)	3/4	0.02079 (17)
Cs2	0	-0.08656 (5)	3/4	0.01895 (17)
Cs3	0.40693 (3)	0.18995 (4)	1.36699 (5)	0.02165 (15)
Cs4	0.21559 (3)	-0.02746 (4)	1.18407 (6)	0.03128 (16)

Table 2. Selected geometric parameters (Å, °)

Sn1-Te2'	2.7206 (9)	Tc2-Cs4 ^v	3.9034 (11)
Sn1Te3	2.7500 (8)	Te2—Cs3 ^{vi}	3.9482 (9)
Sn1—Te1'	2.7530 (9)	Te2—Cs3 ¹	3.9689 (9)
Sn1-Sn1'	2.8506(11)	Te2—Cs4	4.0566 (12)
Te1-Cs4 ⁱⁱ	3.8336 (10)	Te3—Cs1	3.7089(11)
Te1—Cs3	3.8616 (10)	Te3—Cs4	3.7514 (11)
Te1-Cs2 ⁱⁱⁱ	3.8703 (9)	Te3—Cs1 ^{vu}	3.8558 (11)
Te1-Cs1	3.9861 (9)	Te3-Cs3	3.9306 (10)
Te1Cs3 ^{IV}	3.9894 (11)	Te3—Cs3 ^v	4.0572 (10)
Te1—Cs4	4.0064 (11)	Te3—Cs3 ^{vin}	4.1373 (11)
Te2—Cs2	3.7495 (10)	Te3-Cs4 ^v	4.2782 (16)
Te2—Cs2 ⁱⁱⁱ	3.8184 (10)		
Te2'-Sn1-Te3	108.05 (3)	Te2'-Sn1-Sn1'	109.32 (3)
Te2 ⁱ —Sn1—Te1 ⁱ	109.62 (3)	Te3—Sn1—Sn1'	108.11 (3)
Te3—Sn1—Te1	110.72 (2)	Tel'-Snl-Snl'	110.96 (4)
Symmetry codes: (i)	$\frac{1}{2} - x, \frac{1}{2} - y$	$, 2 - z;$ (ii) $\frac{1}{2} - x, \frac{1}{2} - x$	+ $y, \frac{5}{2} - z;$

Symmetry codes: (i) $\frac{1}{2} - x, \frac{1}{2} - y, 2 - z;$ (ii) $\frac{1}{2} - x, \frac{1}{2} + y, \frac{3}{2} - z;$ (iii) -x, -y, 2 - z; (iv) $\frac{1}{2} - x, \frac{1}{2} - y, 3 - z;$ (v) $x, -y, z - \frac{1}{2};$ (vi) $x - \frac{1}{2}, \frac{1}{2} - y, z - \frac{1}{2};$ (vii) 1 - x, -y, 2 - z; (viii) $1 - x, y, \frac{5}{2} - z.$

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CELDIM in CAD-4 Software. Data reduction: CADSHEL in CAD-4 Software. Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997b). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a). Molecular graphics: DIAMOND (Crystal Impact, 1998). Software used to prepare material for publication: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: LN1072). Services for accessing these data are described at the back of the journal.

References

Crystal Impact (1998). DIAMOND. Visual Crystal Structure Information System. Crystal Impact, Bonn, Germany.

Dittmar, G. (1978a). Z. Anorg. Allg. Chem. 453, 68-78.

Dittmar, G. (1978b). Acta Cryst. B34, 2390-2393.

Eisenmann, B., Hansa, J. & Schäfer, H. (1985). Z. Naturforsch. Teil B, 40, 450–457.

© 1999 International Union of Crystallography Printed in Great Britain – all rights reserved

- Eisenmann, B., Kieselbach, E., Schäfer, H. & Schrod, H. (1984). Z. Anorg. Allg. Chem. 516, 49–54.
- Eisenmann, B., Schwerer, H. & Schäfer, H. (1981). Z. Naturforsch. Teil B, 36, 1538-1541.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Kottke, T. & Stalke, D. (1993). J. Appl. Cryst. 26, 615-619.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Ouvrad, G., Sandre, E. & Bree, R. (1988). J. Solid State Chem. 73, 27-32.
- Sheldrick, G. M. (1997a). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
- Vincent, H., Leroux, D. & Bijaoui, B. (1986). J. Solid State Chem. 63, 349-352.

Acta Cryst. (1999). C55, 284-286

$K_4Ni_7(AsO_4)_6$

RIDHA BEN SMAIL, AHMED DRISS ET TAHAR JOUINI

Département de Chimie, Faculté des Sciences, 1060 Campus Universitaire, Tunis, Tunisie. E-mail: tahar.jouini@fst.rnu.tn

(Reçu le 19 mai 1998, accepté le 25 septembre 1998)

Abstract

The title compound, tetrapotassium heptanickel hexaarsenate, has a three-dimensional open anionic framework built up from AsO₄ tetrahedra and NiO₆ octahedra sharing corners and edges. They delimit parallel tunnels, running along the *a* direction, where the K⁺ ions reside. This centrosymmetric framework appears to be similar to that of Na₄Ni₇(PO₄)₆ which is claimed to be noncentrosymmetric.

Commentaire

Lors de l'étude du système $K_2O-NiO-As_2O_5-WO_3$, nous avons isolé une phase constituée de cristaux marrons en forme de parallélépipède. Son étude par diffraction des rayons X sur monocristal a révélé la formule $K_4Ni_7(AsO_4)_6$. Cet orthoarseniate est caracterisé par une charpente anionique tridimensionnelle, formée d'un assemblage d'octaèdres NiO₆ et de tétraèdres AsO₄ connectés par des arêtes et des sommets oxygène. Ils laissent libre des tunnels parallèles à la direction [100] au sein desquels logent les cations K⁺ (Fig. 1). Ces tunnels communiquent entre eux selon la direction [010], par des fenêtres en forme de quadrilatère délimité par quatre arêtes appartenant respectivement à deux tétraèdres AsO₄ et deux octaèdres NiO₆.

Fig. 1. Structure de K₄Ni₇(AsO₄)₆: vue en perspective mettant en évidence les tunnels parallèles à la direction [100] et leurs fenêtres de communication selon la direction [010].

L'ossature de K₄Ni₇(AsO₄)₆ peut être décomposée en couches parallèles au plan (001), liées entre elles par des ponts As-O-Ni. Ces couches sont constituées par des chaînes et des rubans qui se développent selon la direction [100] (Fig. 2). Les chaînes sont constituées des polyèdres Ni1O₆, Ni2O₆ et As2O₄. Deux octaèdres Ni2O₆ symétriques par un miroir et partageant une arête, mettent chacun deux arêtes en commun avec deux tétraèdres As2O₄, l'ensemble formant un maillon de la chaîne considérée. Ces maillons sont liés entre eux par mise en commun de sommets oxygène entre les tétraèdres As2O₄ et des octaèdres Ni1O₆. Entre ces chaînes, apparaissent des rubans formés par les tétraèdres As1O₄ et par les octaèdres Ni3O₆, liés par paires partageant une arête. Deux paires successives, symétriques par un axe 2 parallèle à la direction [010], se connectent par deux tétraèdres As1O₄. Chaque tétraèdre As1O4 met en commun une arête avec l'un des octaèdres Ni3O₆ d'une paire et un sommet avec les deux octaèdres de la paire suivante. Ces chaînes et rubans se connectent par mise en commun de leurs sommets oxygène équatoriaux.

Fig. 2. Vue d'une 'couche' de la charpente de $K_4Ni_7(AsO_4)_6$ montrant l'enchaînement des chaînes et rubans.

Les cations K2⁺ et K3⁺ sont heptacoordinés, les distances K2···O et K3···O variant de 2,557 (9) à 3,169 (11) Å. Les cations K1⁺ sont environnés de neuf atomes d'oxygène, les distances K1···O sont comprises entre 2,592 (7) et 3,162 (7) Å. Les atomes de nickel se trouvent dans des environnements octaédriques légèrement déformés, les distances Ni—O varient de 2,035 (5) à 2,311 (6) Å. La distance moyenne As—O dans les deux tétraèdres AsO₄ est égale à 1,692 (8) Å. Les angles de liaison O—As—O sont compris entre 98,8 (3) et 116,4 (3)°. Les longueurs et angles de liaisons sont en bon accord avec ceux observés dans des composés similaires.

Ce type structural est peu compact puisque le volume apparent d'un anion oxygène vaut environ 21,57 Å³ alors qu'il est habituellement compris entre 15,6 et 20,2 Å³ pour la plupart des édifices ioniques (Galay *et al.*, 1975). Cette particularité est sans doute en partie due à l'existence de larges tunnels parallèles à la direction [100].

Le caractère ouvert de la charpente de ce composé, l'occupation partielle (50%) des sites des ions K^+ et la forte agitation thermique des ions K^+ selon la direction [100] sont des indices favorables à la propriété de conduction ionique (Hong, 1976).

Le phosphate de formulation analogue Na₄Ni₇(PO₄)₆ (Moring & Kostiner, 1986) présente le même arrangement atomique mais a été déclaré être noncentrosymétrique, les auteurs ayant écarté le groupe d'espace C2/m à cause de la persistence de pics intenses dans la Fourier-différence finale. La concordance des coordonnées atomiques dans K₄Ni₇(AsO₄)₆ et Na₄Ni₇(PO₄)₆ nous incite à préparer Na₄Ni₇(PO₄)₆ et à redéterminer sa structure, pour vérifier son groupe d'espace.

Partie expérimentale

La phase $K_4Ni_7(AsO_4)_6$ a été préparée à partir d'un mélange de K_2CO_3 , NiO, WO₃ et As_2O_5 dans les proportions molaires 1:1:1:0,5, préchauffé pendant 24 h à 673 K en vue de l'élimination de CO₂ puis porté à 1223 K pendant 48 h. Il est ensuite refroidi lentement à la vitesse de 15 K h⁻¹. La synthèse de cette phase est reproductible et nécessite la présence de l'oxyde de tungstène.

Données cristallines K4Ni7(AsO4)6 Radiation Mo $K\alpha$ $M_r = 1400,89$ $\lambda = 0.71069 \text{ Å}$ Monoclinique Paramètres de la maille à C2/ml'aide de 25 réflexions $\theta = 12,51 - 14,52^{\circ}$ a = 10,9742 (7) Å $\mu = 16,665 \text{ mm}^{-1}$ b = 14,467 (1) Å T = 293 (2) Kc = 6,731 (1) Å Parallélépipède $\beta = 104,28 (1)^{\circ}$ $0.090 \times 0.054 \times 0.036 \text{ mm}$ V = 1035,6 (2) Å³ Marron Z = 2 $D_x = 4,493 \text{ Mg m}^{-3}$ D_m non mesurée

Collection des données	
Diffractomètre CAD-4	973 réflexions avec
Balayage $\omega/2\theta$	$I > 2\sigma(I)$
Correction d'absorption:	$R_{\rm int} = 0.013$
empirique par ψ scans	$\theta_{\rm max} = 25,96^{\circ}$
(North et al., 1968)	$h = -13 \rightarrow 13$
$T_{\rm min} = 0,274, T_{\rm max} = 0,549$	$k = 0 \rightarrow 17$
1153 réflexions mesurées	$l = 0 \rightarrow 8$
1063 réflexions	1 réflexion de référence
indépendantes	fréquence: 120 min
	variation d'intensité: 0,3%

Affinement

Affinement à partir des F^2	$\Delta \rho_{\rm max} = 1,123 \ {\rm e} \ {\rm \AA}^{-3}$
$R[F^2 > 2\sigma(F^2)] = 0.034$	$\Delta \rho_{\rm min}$ = -1,183 e Å ⁻³
$wR(F^2) = 0,081$	Correction d'extinction:
S = 1,264	SHELXL93 (Sheldrick,
1063 réflexions	1993)
113 paramètres	Coefficient d'extinction:
$w = 1/[\sigma^2(F_o^2) + (0.0108P)^2]$	0,0058 (2)
+ 45,5442 <i>P</i>]	Facteurs de diffusion des
où $P = (F_0^2 + 2F_c^2)/3$	International Tables for
$(\Delta/\sigma)_{ m max} < 0.001$	Crystallography (Tome C)

Tableau 1. Coordonnées atomiques et facteurs d'agitationthermique isotrope équivalents (Ų)

	$U_{ m \acute{e}q}$:	$= (1/3) \sum_i \sum_j U^i$	$^{j}a^{i}a^{j}\mathbf{a}_{i}.\mathbf{a}_{j}.$	
	х	v	c	$U_{\dot{c}\alpha}$
Nil	0	0	0	0,0086 (4)
Ni2	0	0,3764 (1)	0	0,0090 (3)
Ni3	0,32852 (9)	0,69184 (7)	0,1763(1)	0,0078 (3)
Asl	0,09083 (7)	0,19103 (5)	0,2751(1)	0,0061 (2)
As2	0,3055(1)	0	-0,9735 (2)	0,0079(3)
K1†	0,6145 (4)	0,1113 (3)	0,5179 (6)	0,0184 (8)
K2†	0,8051 (7)	1/2	0,5350 (10)	0,038 (2)
K3†	0,4375 (12)	1/2	0,4797 (14)	0,070 (4)
01	0,5104 (5)	0,7836(4)	0,7738 (8)	0,012(1)
O2	0,4836 (5)	0,6038 (4)	0,1995 (8)	0,009(1)
O3	0,8005 (5)	0,2044 (4)	0,8636 (8)	0,009(1)
O4	0,8377 (5)	0,1732 (4)	0,4818 (8)	0,014 (1)
O5	0,8108 (5)	0,4056 (4)	0,8788 (8)	0,011(1)
O6	0,8079 (8)	0	0,8506 (13)	0,012 (2)
O7	0,5474 (8)	0	0,8147 (12)	0,014 (2)

† Facteur d'occupation = 0.50.

Tableau 2. Paramètres géométriques (Å, °)

		• •	-	
Ni1-O21	2,052 (5)	Ni3—O5 ^{xu}	2,046 (6)	
Nil-O2"	2,052 (5)	Ni3—O4 ^{xiii}	2,052 (5)	
Ni1—O2 ⁱⁱⁱ	2,052 (5)	Ni3—O3 ^{xi}	2,059 (5)	
Ni1—O2 ^w	2,052 (5)	Ni3—O2	2,100 (5)	
Ni1—O6 ^v	2,100 (8)	Ni3O1 ^{ix}	2,169 (6)	
Ni1-06 ^{vi}	2,100 (8)	As1-O4 ^{ix}	1,651 (5)	
Ni2—O1 ^{vii}	2,054 (6)	As1-O3 ^{ix}	1,698 (5)	
Ni2—O1 ^{vni}	2,054 (6)	As1-O21	1,715 (5)	
Ni2—O5 ^{1x}	2,078 (5)	As1-O1 ^{vii}	1.719(6)	
Ni2-O5 ^{vi}	2,078 (5)	$As2-O6^{xiv}$	1,656 (8)	
Ni2—O7 ^x	2,311 (6)	As2-O5 ^{xv}	1,698 (6)	
Ni2-07 ^{x1}	2,311 (6)	As2	1,698 (6)	
Ni3-03 ^{x11}	2,035 (5)	As2—O7 ^{xiv}	1,702 (8)	
Codes de symétrie: (i) $x - \frac{1}{2}, y - \frac{1}{2}, z$; (ii) $\frac{1}{2} - x, \frac{1}{2} - y, -z$; (iii)				
$x = \frac{1}{2}, \frac{1}{2} = y, z;$ (iv) $\frac{1}{2} = x, y = \frac{1}{2}, z;$ (v) $1 = x, -y, 1 = z;$ (vi) $x = 1, y, z = 1;$				
(vii) $x = \frac{1}{2}, y = \frac{1}{2}, z = 1$; (viii) $\frac{1}{2} = x, y = \frac{1}{2}, 1 = z$; (ix) $1 = x, y, 1 = z$;				
$(x) \frac{1}{2} - x, \frac{1}{2} - y, 1 - z; (xi) x - \frac{1}{2}, \frac{1}{2} + y, z - 1; (xii) 1 - x, 1 - y, 1 - z;$				
(xiii) $x = \frac{1}{2}, \frac{1}{2} + y, z;$ (xiv) $1 = x, -y, -z;$ (xv) $x = \frac{1}{2}, y = \frac{1}{2}, z = 2;$ (xvi)				
$x = \frac{1}{2}, \frac{1}{2} = y, z = 2.$				

© 1999 International Union of Crystallography Printed in Great Britain – all rights reserved La largeur de balayage est $(1,00 + 0.5tg\theta)$. Les intensités ont été corrigées des facteurs de Lorentz-polarisation. La structure a été résolue par la méthode de l'atome lourd (*SHELXS86*; Sheldrick, 1990) puis affinée par la méthode des moindres carrés (*SHELXL*93; Sheldrick, 1993).

Collection des données: CAD-4 EXPRESS (Enraf-Nonius, 1994; Duisenberg, 1992; Macíček & Yordanov, 1992). Affinement des paramètres de la maille: CAD-4 EXPRESS. Réduction des données: MolEN (Fair, 1990). Graphisme moléculaire: ATOMS (Dowty, 1993). Logiciel utilisé pour préparer le matériel pour publication: SHELXL93.

Des documents complémentaires concernant cette structure peuvent être obtenus à partir des archives électroniques de l'UICr (Référence: GS1015). Les processus d'accès à ces archives sont donné au dos de la couverture.

Références

Dowty, E. (1993). ATOMS2.2. A Computer Program for Displaying Atomic Structures. IBM Version 2.3. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, EU.

Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.

- Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, Les Pays-Bas.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, Les Pays-Bas.
- Galay, J., Mcunier, G., Andersson, S. & Astrom, A. (1975). J. Solid State Chem. 13, 142–159.
- Hong, H. Y.-P. (1976). Mater. Res. Bull. 11, 173-182.
- Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.
- Moring, J. & Kostiner, E. (1986). J. Solid State Chem. 62, 105-111.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Université de Göttingen, Allemagne.

Acta Cryst. (1999). C55, 286-288

KCu₄Se₃

Petra Stoll, Christian Näther, Inke Jeß and Wolfgang Bensch

Institut für Anorganische Chemie, Christian-Albrechus Universität Kiel, Olshausenstraße 40, D-24098 Kiel, Germany. E-mail: wbensch@ac.uni-kiel.de

(Received 30 September 1998; accepted 4 November 1998)

Abstract

The reaction of K_2Se_5 and Cu yields single crystal of potassium tetracopper triselenide, KCu_4Se_3 , while is isotypic with the sulfides ACu_4S_3 (A = K, R Cs, Tl) and the selenide $CsCu_4Se_3$. The structure consists of double layers of copper cations, tetrahedrally coordinated by selenium and separated by potassium cations.